Toto PDF obsahuje kapitolu z knihy: Zdeněk Fiala, Drahomíra Holmannová (ed.): *Uhlíkové nanomateriály. Biomedicínské aplikace a toxicita*, Praha: Karolinum 2025, https://doi.org/10.14712/9788024659848.

15. Genotoxický potenciál grafenu v pokusech in vitro (THP-1 buňky)

(Ústav preventivního lékařství)

© Univerzita Karlova, 2025 © Ústav preventivního lékařství, 2025

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

https://doi.org/10.14712/9788024659848.15

15 GENOTOXICKÝ POTENCIÁL GRAFENU V POKUSECH *IN VITRO* (THP-1 BUŇKY)

Komentář k publikaci Malkova A, Svadlakova T, Singh A et al. In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. *Nanomaterials*. 2021,11(9),2210. https://doi.org/10.3390/nano11092210.

Metodiky jsou podrobně popsány v příloze.

15.1 ÚVOD

Grafen je dvojrozměrný nanomateriál (NM), jehož atomová struktura má charakter medové plástve. Vykazuje výjimečné technologické vlastnosti, ke kterým patří pružnost, mechanická odolnost a síla, vysoká tepelná odolnost, elektrická vodivost a velký povrch se schopností vázat různé molekuly.^{1,2} Má široké využití, včetně biomedicínských aplikací. Příkladem mohou být antibakteriální a antivirové aplikace, onkologická terapie, doprava léčiv do specifických tělních kompartmentů, fototermická terapie a tkáňové inženýrství.² Potenciální zdravotní (ne)bezpečnost grafenu je determinována jeho fyzikálně-chemickými vlastnostmi, metodami syntézy, disperzním a oxidačním stavem, formou expozice a velikostí dávky.^{2,3}

Krevní komponenty přicházejí během expozice do kontaktu jak s xenobiotiky (v daném případě s NM), tak i s buňkami ovlivněných tkání. Představují tak vhodný "nástroj" pro hodnocení zdravotních rizik chemických látek.¹ Leukocyty se nacházejí v přední linii obrany organismu proti patogenům a cizorodým materiálům a jsou spoluzodpovědné za jejich eliminaci.¹ Z uvedených důvodů byla pro *in vitro* hodnocení toxicity grafenu použita lidská buněčná linie odvozená od buněk akutní monocytární leukémie (THP-1 buněčná linie).⁴

15.2 CÍLE

Cílem prezentované *in vitro* studie bylo získání nových dat o cytotoxickém, cytostatickém, genotoxickém a imunotoxickém potenciálu dvou typů nefunkcionalizovaných grafenových plátků. Pro studii byly jako reprezentativní modely použity neaktivované (suspenzní) THP-1 buňky.

15.3 MATERIÁL A METODIKY

15.3.1 Testované NM

Ve studii byly testovány dva typy nefunkcionalizovaných grafenových plátků (GP1 a GP2) v práškové podobě. GP1 byl komerčním produktem firmy PlasmaChem GmbH (No. PL-P--G750, Berlín). GP2 byl připravený v centru CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College, Dublin). Detailní informace o přípravě suspenze, jejím testování na přítomnost endotoxinu a vlastnostech obou typů GP lze nalézt v publikacích Švadlákové et al. a Málkové et al.^{5,6} Základní charakteristiky jsou stručně shrnuty v Tabulce 4. Tloušťka obou GP byla do 4 nm.

Nanomateriál	Velikost částic (nm)	PdI	Průměrný ζ-potenciál (voda; mV)	Průměrný ζ-potenciál (RPMI; mV)
GP1	$179,0 \pm 103,0$	0,188	$\leq -50,0$	≤-9,0
GP2	332,0 ± 85,0	0,293	≤-47,0	≤-11,0

Tabulka 4. Základní charakteristiky GP v suspenzích s milliQ vodou a v RPMI

15.3.2 Expozice lidské THP-1 buněčné linie GP

Lidská THP-1 buněčná linie byla zakoupena od ECACC (European Collection of Authenticated Cell Cultures; Salisbury, Spojené království). Buňky byly inkubovány v kontrolované atmosféře (37 °C, 5 % CO₂) v kultivačním médiu skládajícím se z RPMI 1640 média bez fenolové červeně (Corning, New York, USA), 10 % tepelně inaktivovaného fetálního bovinního séra, 2 mM GlutaMAX, 1 mM pyruvátu sodného (vše od Life Technologies, Carlsbad, USA), 10 mM HEPES; 0,05 mM 2-merkaptoetanolu, penicilinu (100 U/ml) a streptomycinu (100 µg/ml) (vše od Sigma-Aldrich, St. Louis, USA). Expozice buněčných kultur cholátovým suspenzím GP1 a GP2 (koncentrace 60, 30 a 5 µg/ml) a pozitivním a negativním kontrolám trvala čtyřicet hodin, což odpovídá přibližně 1,5násobku délky buněčného cyklu.

15.3.3 Testování cytotoxicity

K hodnocení cytotoxického potenciálu (buněčné viability) dvou typů GP vůči THP-1 buněčné linii byl použit test WST-1 (Cell Proliferation Reagent WST-1, Roche, Basel, Švýcarsko), LDH test (CyQUANTTM LDH Cytotoxicity Assay, Invitrogen, Carlsbad, USA) a test membránové integrity prostřednictvím mikroskopické analýzy s použitím trypanové modři (Gibco, Thermo Fisher Scientific, Carlsbad, USA).

15.3.4 Testování oxidačního stresu

Pro hodnocení míry oxidačního stresu, indukovaného expozicí THP-1 buněčné linie GP1 a GP2, byla měřena hladina glutathionu v buněčných lyzátech (*Glutathione Colorimetric Detection Kit*, Invitrogen, Thermo Fisher Scientific, Carlsbad, USA).

15.3.5 Testování cytostatického a genotoxického potenciálu

K testování cytostatického a genotoxického potenciálu dvou typů GP vůči THP-1 buněčné linii byl použit mikronukleus test s blokací cytokineze (*cytokinesis block micronucleus test*, CBMN test). Pomocí mikroskopické analýzy (400násobné zvětšení) byl hodnocen ukazatel cytostatického potenciálu (*cytokinesis-block proliferation index*, CBPI) a s ním spojený odhad procenta cytostázy (% cytostasis), replikační index (RI), index dělení jader (*nuclear division index*, NDI) a ukazatele poškození DNA (počet binukleárních buněk [BNC] s mikrojádrem [MN], s jaderným pupenem [NBUD] a s nukleoplasmatickým můstkem [NPB] na 1000 BNC).

15.3.6 Testování imunotoxického potenciálu

Pro testování imunotoxického potenciálu dvou typů GP vůči THP-1 buněčné linii bylo použito měření hladin interleukinů IL-6 a IL-10 v buněčném supernatantu (reportérové HEK-Blue[™] buňky; Invivogen, San Diego, USA) a měření hladiny tumor nekrotizujícího faktoru α (TNF-α; ELISA kit, Human TNF-α Quantikine ELISA kit, R&D Systems, Minneapolis, USA).

15.3.7 Statistická analýza

Statistická analýza byla provedena pomocí SW GraphPad PrismTM, verze 8.2.1 329 (GraphPad Software Inc., San Diego, USA). Výsledky byly prezentovány jako aritmetické průměry se směrodatnou odchylkou a byly normalizovány ke kontrole. Za statisticky signifikantní byly považovány rozdíly dosahující p < 0,05. Dle Shapiro-Wilkova testu normality byla následně použita parametrická nebo neparametrická analýza rozptylu (ANOVA) následována Dunnetteho testem nebo Kruskal-Wallisovým testem.

15.4 VÝSLEDKY A DISKUSE

15.4.1 Cytotoxicita

Byla zjištěna interference mezi GP1 a GP2 a testem cytotoxicity WST-1 (ve smyslu falešné pozitivity). Z tohoto důvodu nebyly výsledky testu zahrnuty do celkového hodnocení cytotoxicity. Vliv expozice GP1 i GP2 na hladinu extracelulární LDH byl nevýznamný (test byl z důvodu prevence interferencí modifikován). Rovněž při testu membránové integrity s použitím trypanové modři (mikroskopická analýza) nebyl zjištěn významný nárůst počtu poškozených buněk či změny celkového počtu buněk. Hodnocení viability bylo provedeno manuálně. Přístrojový odečet buněk může být zatížen chybou v situacích, kdy jsou agregáty GP přístrojem považovány za buňky.⁷ Viabilita buněk nebyla ovlivněna přídavkem cytochalasinu B.

15.4.2 Oxidační stres

Po expozici GP1 byl pozorován významný (na koncentraci závislý) pokles hladin oxidovaného, volného i celkového glutathionu (Obrázek 18a) prakticky u všech expozičních koncentrací. Pokles neodpovídá obranné reakci buněk proti oxidačnímu stresu. Domníváme se, že pokles byl způsoben zvýšenou spotřebou GSH při reparaci poškozené DNA (viz výsledky CBMN testu). Domněnku podporuje absence zánětlivé reakce, která bývá oxidačním stresem indukována. V případě GP2 došlo k významnému poklesu hladiny oxidovaného glutathionu po expozici nejvyšší koncentraci 60 µg/ml (Obrázek 18b). Odlišné chování GP1 a GP2 by bylo možné vysvětlovat na bázi rozdílné struktury a souvisejících fyzikálně-chemických vlastností.

Obrázky 18. Koncentrace glutathionu v lyzátech buněčné linie THP-1 po expozici GP1 a GP2 *Poznámka:* (A) Koncentrace celkového glutathionu (Total GSH), oxidovaného glutathionu (GSSG) a volného glutathionu (Free GSH) po expozici GP1; (B) koncentrace celkového glutathionu (Total GSH), oxidovaného glutathionu (GSSG) a volného glutathionu (Free GSH) po expozici GP2. Data jsou prezentována jako procento (%) neexponované kontroly (0 μ g/ml) a zobrazeny jako aritmetický průměr ± směrodatná odchylka, * p < 0,05, ** p < 0,01, *** p < 0,001.

15.4.3 Cytostatický potenciál

Po expozici GP1 i GP2 byl pozorován nevýznamný (na koncentraci závislý) pokles parametrů proliferační aktivity CBPI, NDI a RI a nárůst procenta cytostázy (Obrázek 19). Za indikátor cytotoxického potenciálu je považován pokles viability buněk pod 80 %.⁸ V našich experimentech dosahovala míra cytostázy (u nejvyšších expozičních koncentrací) maximálně 20 %. Údaje naznačují, že testované koncentrace daných GP jsou bez významného cytotoxického potenciálu.

15.4.4 Genotoxický potenciál

Po expozici GP1 i GP2 byl pozorován významný (na koncentraci závislý) nárůst poškození DNA, reprezentovaný nárůstem počtu BNC s MN, NBUD i NPB na 1000 BNC (Obrázek 20). LOGEL (*lowest observed genotoxic effect level*) se v případě GP1 pohyboval okolo 5 µg/ml, v případě GP2 okolo 30 µg/ml. Mezi pravděpodobné mechanismy poškození

Obrázek 19. Proliferační potenciál buněčné linie THP-1 po expozici GP1 a GP2 (CBMN test) *Poznámka:* (A) *Cytokinesis-block proliferation index* (CBPI); (B) index dělení jader (*nuclear division index*, NDI); (C) replikační index (RI); (D) odhad procenta cytostázy (% cytostasis). Data jsou prezentovaná krabicovými grafy s mediánem a interkvartilovým rozpětím či jako procento (%) neexponované kontroly (0 µg/ml) a zobrazeny jako aritmetický průměr \pm směrodatná odchylka. CH – cholát sodný (v koncentraci odpovídající jeho koncentraci v 60 µg/ml GP); H₂O – podíl vody odpovídající jejímu podílu v 60 µg/ml GP; AraC 5 či 20 – cytosin arabinosid (pozitivní kontrola v koncentraci 5 či 20 ng/ml).

DNA lze zařadit přímou interakci mezi odhalenou DNA během dělení jádra (buňky) a/nebo mechanický vliv GP na cytoskelet buňky vedoucí k narušení funkce mitotického aparátu. Expozice GP1 (menší částice) vedla k nevýznamně vyššímu výskytu BNC s MN, NBUD i NPB v porovnání s expozicí GP2 (větší částice). Lze proto předpokládat, že pozorovaný genotoxický potenciál je závislý jak na expoziční koncentraci, tak do určité míry i na velikosti částic.

15.4.5 Imunotoxický potenciál (zánětlivá odpověď)

Po expozici GP1 i GP2 nebyla pozorována zvýšená exkrece prozánětlivých (IL-6, TNF-α) nebo protizánětlivých (IL-10) cytokinů. Tyto výsledky naznačují nízký až zanedbatelný potenciál obou typů GP k vyvolání imunitní reakce či oxidačního stresu. Zároveň potvrzují nepřítomnost mikrobiální kontaminace na povrchu částic. Výsledky tak naznačují možnou hemokompatibilitu nefunkcionalizovaných GP vůči buňkám linie THP-1.^{9,10}

Obrázek 20. Poškození DNA buněk linie THP-1 po expozici GP1 a GP2 (CBMN test) *Poznámka:* (A) Dvojjaderná buňka s mikrojádrem (BNC s MN); (B) dvojjaderná buňka s jaderným pupenem (BNC s NBUD); (C) dvojjaderná buňka s nukleoplasmatickým můstkem (BNC s NPB). Data jsou prezentovaná krabicovými grafy s mediánem a interkvartilovým rozpětím. CH – cholát sodný (v koncentraci odpovídající jeho koncentraci v 60 µg/ml GP); H_2O – voda (podíl odpovídající jejímu podílu v 60 µg/ml GP); AraC 5 či 20 – cytosin arabinosid (pozitivní kontrola v koncentraci 5 či 20 ng/ml); * p < 0,05, ** p < 0,01, *** p < 0,001.

15.5 SHRNUTÍ

Po čtyřicetihodinové expozici buněk linie THP-1 cholátovým suspenzím dvou typů nefunkcionalizovaných grafenových plátků (GP) nebylo zjištěno významné poškození buněčné membrány, významný pokles viability buněk či významná indukce oxidačního stresu. Byl zaznamenán pouze nevýznamný, koncentračně závislý pokles proliferačního potenciálu buněk. Na druhou stranu byl zjištěn významný, koncentračně a "velikostně" závislý nárůst poškození DNA, způsobený pravděpodobně přímou interakcí GP s odhalenou DNA během buněčného dělení a/nebo přímou interakcí GP s cytoskeletem a mitotickým aparátem buněk. Nezaznamenali jsme významné změny v expresi cytokinů (IL-6, IL-10 a TNF-α), které by naznačovaly kontaminaci povrchů testovaných GP či indukci zánětlivé imunitní odpovědi.

15.6 LITERATURA

Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12(11):10582–10620. doi:10.1021/acsnano.8b04758.

- Yao J, Wang H, Chen M et al. Recent Advances in Graphene-Based Nanomaterials: Properties, Toxicity and Applications in Chemistry, Biology and Medicine. *Microchim Acta*. 2019;186:395. doi:10.1007/s00604-019-3458-x.
- 3. Liao C, Li Y, Tjong SC. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. *Int J Mol Sci.* 2018;19(11):3564. doi:10.3390/ijms19113564.
- 4. Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). *Int J Mol Sci.* 2019;20(2):247. doi:10.3390/ijms20020247.
- Svadlakova T, Hubatka F, Turanek Knotigova P et al. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. *Nanomaterials*. 2020;10(3):418. doi:10.3390/nano10030418.
- 6. Malkova A, Svadlakova T, Singh A et al. In Vitro Assessment of the Genotoxic Potential of Pristine Graphene Platelets. *Nanomaterials*. 2021;11(9):2210. doi:10.3390/nano11092210.
- Guadagnini R, Halamoda Kenzaoui B, Walker L et al. Toxicity Screenings of Nanomaterials: Challenges Due to Interference with Assay Processes and Components of Classic In Vitro Tests. *Nanotoxicology*. 2015;9(sup 1):1324. doi:10.3109/17435390.2013.829590.
- Burgum MJ, Clift MJD, Evans SJ et al. Few-Layer Graphene Induces Both Primary and Secondary Genotoxicity in Epithelial Barrier Models In Vitro. *J Nanobiotechnology*. 2021;19(1):24. doi:10.1186/s12951-021-00769-9.
- 9. Kim JK, Shin JH, Lee JS et al. 28-Day Inhalation Toxicity of Graphene Nanoplatelets in Sprague-Dawley Rats. *Nanotoxicology*. 2016;10(7):891–901. doi:10.3109/17435390.2015.1133865.
- Malanagahalli S, Murera D, Martín C et al. Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. *Nanomaterials*. 2020;10(2):228. doi:10.3390/nano10020228.

ZKRATKY

16HBE	lidská bronchiální epiteliální buněčná linie (human bronchial epithelial cells)		
3HFWC	hyper-harmonizovaný vodní komplex hydroxylovaného fullerenu C_{60}		
A549	alveolární epiteliální buňky A549 (adenocarcinomic human alveolar basal epithelial cells)		
ABCA-1	ATP-binding cassette transporter		
ALP	alkalická fosfatáza		
ALT	alaninaminotransferáza		
ARPE-19	imortalizované lidské retinální buňky		
AST	aspartátaminotransferáza		
BAL	bronchoalveolární laváž		
BEAS-2B	imortalizovaná a nenádorová linie lidských plicních epiteliálních buněk (bronc.		
	epithelial cells)		
BMEC	mozkové mikrovaskulární endoteliální buňky (bone marrow microvascular		
	endothelial cells)		
BSA	bovinní sérový albumin		
BUN	blood urea nitrogen		
C ₆₀	fulleren		
CaCo2	buněčná linie lidského kolorektálního adenokarcinomu (human colon		
	adenocarcinoma cell line)		
Caco-2	imortalizované lidské buňky kolorektálního adenokarcinomu		
cAMP	cyklický adenosinmonofosfát		
CAT	kataláza		
CB	saze (carbon black)		
CD	uhlíkové tečky (carbon dots)		
CDH1	kadherin 1		
CFU	kolonie tvořící jednotku		
CHCE-T	lidské rohovkové epitelové buňky		
CNF	uhlíková nanovlákna (<i>cabon nanofibres</i>)		
CNH	uhlíkové nanorohy (carbon nanohorns)		
CNM	uhlíkové nanomateriály (carbon nanomaterials)		
CNP	uhlíkové destičky (carbon platelets)		
CNS	centrální nervová soustava		
CNT	uhlíkové nanotrubice (carbon nanotubes)		
CPPED1	calcineurin-like phoshoesterase domain containing 1		
СТ	počítačová tomografie		
CVD	chemická depozice z plynné fáze		

DAMP	damage/danger-associated molecular patterns
DWCNT	dvoustěnné uhlíkové nanotrubice (double-walled carbon nanotubes)
EC ₅₀	polovina maximální účinné koncentrace
EEG	elektroencefalografie
EKG	elektrokardiografie
EPC	endoteliální progenitorové buňky
EPO	eozinofilní peroxidáza
FBN1	fibrilin 1
FBS	fetální bovinní sérum
FDT	fotodynamická terapie
FLG	vícevrstvý grafen (<i>few laver graphene</i>)
FLGO	několikavrstvý grafen oxid (<i>few-laver graphene oxide</i>)
FN1	fibronektin
FSF1	fibrohlasty z kůže lidského obličeje
FSH	folikuly stimulující hormon
FTT	fototermální teranie
GGT	v-glutamyltransferáza
GIT	gastrointestinální trakt
GND	grafanová nanodestičky (grankana nanonlatalate)
GO	ovid grafenu (granhan ovida)
GO DOTA	oxid grafenu funkcionalizovaný kysalinou 1.4.7.10 tetraazaovklododekan 1.4.7.10
UO-DOIA	tetractovou
GO OD	-reflaction ou
CP	grafanové recký oklad grafena (graphene oklad quantan dois)
CDCD	gialchove platky
COD	receptor sprazeny s G proteinem (G protein-coupled receptors)
UQD	gialenove kvalilove lecky (graphene quantum dois)
ΠΖΑΓΛ	histore jamily member A
H9C2	
HaCal	imortalizovane keratinocyty
HASMC	bunky hladke svaloviny aorty (<i>numan aortic smooth muscle cells</i>)
HBEC-3KI	nenadorove bunky lidskeho bronchialniho epitelu
hConECs	lidské epitelové spojivkové buňky
hCorECs	lidské epitelové buňky rohovky
HEB	hematoencefalická bariéra
HEK-293T	lidské embryonální ledvinné buňky
HepG2	buňky hepatocelulárního karcinomu
НК-2	dospělé lidské buňky proximální tubulárního epitelu
HLF	lidské plicní fibroblasty (human lung fibroplasts)
HNEpC	primární buňky lidského nosního epitelu
hpf	hodin po fertilizaci
HSC 2012	Hazard Communication Standard
Hsp90	heat shock protein 90
HT29	buňky lidského kolorektálního adenokarcinomu s epiteliální morfologií
HUVEC	endoteliální buňky lidské pupečníkové žíly (human umbilical vein endothelial cells)
IARC	International Agency for Research on Cancer
ICAM-1	solubilní intercelulární adhezní molekuly 1 (intercellular adhesion molecules)
IL	interleukin
LLC-PK1	prasečí buňky proximálního ledvinného tubulu
LOX-1	lectin-like oxidized low-density lipoprotein receptor
LPS	lipopolysacharid

MAMP	microbe-associated molecular patterns	
MPO	myeloperoxidáza	
MWCNT	vícestěnné uhlíkové nanotrubice (multi-walled carbon nanotubes)	
MWCNT-PVP	mnohovrstvé uhlíkové nanotrubice funkcionalizované polyvinylpyrrolidonem	
MWCNT-TEPA	MWCNT funkcionalizované tetraetylenpentaminem	
NCI-H322	nemalobuněčný bronchoalveolární karcinom	
NCM460	epitelové buňky tlustého střeva	
ND	nanodiamanty	
NET	extracelulární neutrofilové pasti (neutrofil extracellular traps)	
NF-κB	nuclear factor kappa-light-chain-enhancer of activated B cells	
NHBE	normální lidské bronchiální epitelové buňky	
NHDF	lidské dermální fibroblasty	
NIOSH	National Institute for Occupational Safety and Health	
NIR	blízké infračervené záření	
NKR-52E	krysí epitelové buňky ledvin	
NLR	NOD-like receptor	
NLRP3	NOD-like receptor family pyrin domain containing 3	
NOD	nucleotide-binding oligomerization domain	
OSHA	Occupational Safety and Health Administration	
Ox-MWCNT	oxidované MWCNT	
PAMP	pathogen-associated molecular patterns	
PEG	polyethylenglykol	
PEG-MWCNT	polyetylenglykolované MWCNT	
PRR	pattern recognition receptors	
PTEN	homolog fosfatázy a TENsinu (phosphatase and TENsin homolog)	
RES	retikuloendoteliální systém	
rGO	redukovaný GO	
RhE	SkinEthic [™] model rekonstruované lidské epidemirs	
ROS	volné kyslíkové radikály (reactive oxygen species)	
RPE	retinální pigmentový epitel	
RTG	rentgenové záření	
SAEC	epitelové buňky nižších etáží dýchacích cest (small airway epithelial cells)	
sFLG	malý vícevrstevný grafen (small few-layer graphene)	
SLGO	jednovrstvý grafen oxid (single-layer graphene oxide)	
SOD1	superoxiddismutáza	
SWCNT	jednovrstvé uhlíkové nanotrubice (single-wall carbon nanotubes)	
TGF	transforming growth factor	
TGFB1	transfornující růstový faktor β (<i>transforming growth factor</i> β)	
TLR	Toll-Like Receptor	
T-MWCNT	dispergované Tweenem-80	
TNF	tumor necrosis factor	
VCAM-1	solubilní vaskulární buněčné adhezní molekuly 1 (vascular cell adhesion molecule)	
VEGF	vaskulární endotelový růstový faktor	
Vero	buněčná linie epiteliálních buněk ledvin z afrického kočkodana zeleného	
ZO-1	zonnula occludens-1	